Landfill Leachate Treatment Solutions – What Technologies are Working and How to Select the Best Solution

South Carolina Palmetto Chapter
SWANA Spring Conference
Pawleys Island, South Carolina

Joseph G. Cleary, P.E., BCEE
HDR
Senior Vice President
Mahwah, New Jersey

May 8, 2014

Outline
- Key Drivers
- Treatment Challenges
- Treatment Technologies
- Approach to Selection
- Case Studies
- Summary
Key Drivers

- High Operating Costs
- Increased Pressure from local POTW's
 - Ammonia/BOD/COD
 - Surcharges
 - Volume control or rejection
 - Variability in Characteristics
 - Impact on UV Systems
 - TDS/Chlorides
- Increasing Condensate/Leachate Extraction
 - Cell Development
 - Stormwater Management
 - On-Site Recirculation
- Disposal is becoming more stringent
- Future? Pharmaceuticals, Tritium, TDS, Nitrogen

Treatment Challenges

- PRETREATMENT FOR POTW
 - NH3-N/TKN, Chloride/TDS, BOD, TSS
- FULL TREATMENT FOR DIRECT DISCHARGE – High degree of treatment needed:
 - ~1 mg/L NH3-N
 - 10 to 15 mg/L BOD
 - 10 to 15 mg/L TSS
 - Metals
 - TDS
 - VOC, SVOC, Pesticides, Herbicides, PCBs and emerging contaminants.
 - Whole effluent toxicity (bioassay)
Leachate Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>100 – 500</td>
</tr>
<tr>
<td>COD</td>
<td>250 – 1500</td>
</tr>
<tr>
<td>TSS</td>
<td>40 – 200</td>
</tr>
<tr>
<td>TKN</td>
<td>300 – 1200</td>
</tr>
<tr>
<td>Ammonia</td>
<td>200 – 1000</td>
</tr>
<tr>
<td>Total P</td>
<td>1 – 3</td>
</tr>
<tr>
<td>TDS</td>
<td>500 – 4000</td>
</tr>
<tr>
<td>Color (TCU)</td>
<td>500 – 1500</td>
</tr>
</tbody>
</table>

Leachate Technology Alternatives

BIOLOGICAL TREATMENT
- Activated Sludge
- SBRs – Sequencing Batch Reactor
- PACT
- MBRs – Membrane Bioreactor
- MBBR – Moving Bed Bioreactor
- RBCs & Biofilter
- Wetlands
- Anaerobic Treatment
- Anammox

PHYSICAL/ CHEMICAL TREATMENT
- Reverse Osmosis
- Ammonia Stripping
- Vacuum Distillation
- Nutrient Recovery
- Evaporation
- Breakpoint Chlorination
- Chemical Oxidation
Activated Sludge Definition

- Gelatinous mass of microorganisms, zooglaeal bacteria, protozoa & rotifers
- Biosolids floc produced with wastewater by growth of bacteria in presence of dissolved oxygen and recycled floc after settling.

Activated Sludge – Process Flow Diagram
History and Key Milestones

- 1913 – Initial research in MA and UK
- 20s – First plant in US in MA
- 40s – NYC step feed plants
- 50s – 300 AS plants in US, Aerated Lagoons at Pulp and Paper Mills
- 60s – SBRs
- 70s – Pure Oxygen, PACT and Deep Shaft
- 80s – Thermophilic Aerobic and Selectors
- 90s – Membrane Bioreactors and Moving Bed Bioreactors
- 2000 to present – Sharon, Biomag, Nereda, Annamox
- 2014 forward – What’s Next?

Flocculation & Settling Characteristics of Activated Sludge as Related to Organic Loading
Sequencing Batch Reactor
(Freshkills, NY; RI; & Grows, PA)

PACT Wastewater Treatment System
Membrane Bioreactor

Fixed Film Technology

Biofilm/Activated sludge Sedmentation

IFAS System with Pre-DN (Anoxic Zone)
Reverse Osmosis

How does Rochem Treat Leachate?

Leachate

First Stage

Concentrate Stage

Permeate Stage

Permeate

Concentrate
Ammonia Recovery (ARP)

ARP is Physical/Chemical Separation / Recovery

Ammonia Management Alternatives

- Separation
 - ARP: Chemisorption + Vacuum
 - Air/Steam Stripping
 - Struvite Precipitation

- Conversion
 - Biological
 - Sharon®, AT-3
 - Fixed Film
 - Anammox®
 - BABE®, InNitri®, others
 - Breakpoint Chlorination

Physical Chemical

How to Select the Best Solution – Comparison of Treatment Alternatives

- Identify contaminants of concern and treatment objectives
- Prepare evaluation criteria scoring matrix
- List advantages and disadvantages of each alternative
- Develop capital and operating screening costs for each alternative
- Compare non-cost criteria for each alternative based on a ranking system developed with team (performance, reliability, footprint, operator skill, adaptability…)
- Project Team meeting for review and selection of appropriate treatment system for conceptual design
- Discuss need for treatability and pilot study
Importance and Value of Treatability Studies

- Confirm that a design will work in lab first
- Gain more confidence in design and operation
- Troubleshoot performance issues
- Each test program is unique – need test plan
- Laboratory bench scale studies (i.e., biological and physical/chemical technologies)
- On-site pilot studies (i.e., MBR and RO systems)

Treatability Studies

- Treatability and/or pilot studies for technology demonstration and design criteria
 - Bench-scale studies at landfill or at treatability laboratory
 - Pilot studies, if necessary
 - Vendor studies for proprietary or unique technologies
Leachate is similar to some Industrial Wastewaters

- Treatment options
 - Metals – oxidation and precipitation
 - BOD/COD and TKN – Biological (aerobic, anaerobic, nitrification, denitrification and variations)
 - Ammonia – Phys/Chem (steam stripping, vacuum distillation, air stripping, breakpoint chlorination, ion exchange)
 - Particulates – Sedimentation and filtration
 - Trace Organics & Pharmaceutical & Personal Care Products – PACT, GAC and Chemical Oxidation
- Process issues
 - Nitrification inhibition
 - Startup and operation
 - Chemical requirements
 - Sludge production and disposal
 - RO reject disposal
 - Loads can change overtime

What’s Next for Activated Sludge Technologies

- Microbiology – Selecting Organisms
- Solids-Liquid Separation
- Technologies
Microbiology – Selecting Organisms
- Heterotrophic and Autotrophic bacteria
- Phosphorus removal bacteria
- Anammox bacteria
- Granules in Nereda
- Others

Solids – Liquid Separation
- Membrane Bioreactor
- BioMag
- Nereda
Technologies (New)

- BioMag
- Nereda - Granular Sludge
- Future?

BIOMAG

- Uses magnetite as ballast to enhance settling rates
- Specific gravity 5.6
- Magnetically Retrievable (polish)
- Requires high energy mixing to maintain solids in suspension
BIOMAG

NEREDA

Aerobic granules

- Excellent settling properties
- Pure biomass, no support media required
- High biomass concentration
- Simultaneous extensive biological N- and P-removal
- Simple one-tank concept (no clarifiers)
- Small footprint
- Simple and easy operation
- Sustainable technology
- Low costs
How to Make Granules

Selection mechanism: settling pressure and/or short decant phase

- Heterotrophic growth: \(\text{COD} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \)
- Nitrification: \(\text{NH}_4 + \text{O}_2 \rightarrow \text{NO}_3^- \)
- P-removal/anoxic growth: \(\text{COD} + \text{NO}_3^- + \text{PO}_4^{3-} \rightarrow \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O} + \text{poly-P} \)

Oxygen gradient in granule enables simultaneous COD, P and N-removal

SBR Mode Operation

Nereda™ process

- All processes in one reactor
- Simple cycle
- Short settling phase
- Fill and draw combined
- Continuous feed: multiple reactors or buffer tank
Case Studies for Landfill Leachate Treatment

<table>
<thead>
<tr>
<th>Location</th>
<th>AS</th>
<th>SBR</th>
<th>MBR</th>
<th>RO</th>
<th>Evaporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshkills, Staten Island, NY</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROWS in PA</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Seneca Meadows in NY</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Warren Township, NJ</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cumberland County, NJ</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monmouth County, NJ</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Barre, MA</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gainsville, GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampson County, NC</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Green Lane, Ontario, Canada</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDougual, Ontario, Canada</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merrick, Ontario, Canada</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Case Study Activated Sludge – MLE Process (Industrial)
History of Plant

- 2003 – Design of New WWTP – used bench scale treatability and process calculations
- 2008 – Design of Upgrade Capacity using BIOWIN calibration to full scale data
- 2008 – Nitrification upset – bench scale work on inhibition, model on recovery time
- 2009 – Capacity study using BIOWIN and treatability
- 2013 – Evaluating upgrade of capacity and converting to MBR
- 2015 – What’s Next?
Summary

- Leachate is unique, but similar to some industrial wastewaters
- There are a lot of technologies available to choose from
- Use the approach to select best solution and Vendor(s)
- Treatability testing provides value

Thank you

Joseph.Cleary@hdrinc.com

201-469-0579
Questions & Answers